close
    • chevron_right

      Un-computable quantum maze computed by quantum-maze computer

      Chris Lee · news.movim.eu / ArsTechnica · Monday, 7 December, 2020 - 20:10

    Green lights illuminate what appears to be a glass box.

    Enlarge / One beam enters, two beams leave. (credit: Melissa Meister / Flickr )

    I am a great believer in solving problems with lasers. Are you suffering from a severely polarized society and a fast-growing population living below the poverty line? Well, I have the laser to solve all your problems.

    OK, maybe not. But when it comes to quantum computing, I am of the belief that lasers are the future. I suspect that the current architectures are akin to the Colossus or the ENIAC: they are breakthroughs in their own right, but they are not the future. My admittedly biased opinion is that the future is optical. A new paper provides my opinion some support, demonstrating solutions to a mind-boggling 10 30 problem space using a quantum optical system. Unfortunately, the support is a little more limited than I'd like, as it is a rather limited breakthrough.

    Photons flipping coins

    The researchers have demonstrated something called a Gaussian boson sampling system. This is essentially a device designed to solve a single type of problem. It's based on devices called "beam splitters," so let's start with a closer look at how those work.

    Read 16 remaining paragraphs | Comments

    index?i=qILNEnXePiI:f8OBYZNpejo:V_sGLiPBpWUindex?i=qILNEnXePiI:f8OBYZNpejo:F7zBnMyn0Loindex?d=qj6IDK7rITsindex?d=yIl2AUoC8zA