phone

    • chevron_right

      ZuoRAT Malware Is Targeting Routers

      news.movim.eu / Schneier • 30 June, 2022

    Wired is reporting on a new remote-access Trojan that is able to infect at least eighty different targets:

    So far, researchers from Lumen Technologies’ Black Lotus Labs say they’ve identified at least 80 targets infected by the stealthy malware, including routers made by Cisco, Netgear, Asus, and DrayTek. Dubbed ZuoRAT, the remote access Trojan is part of a broader hacking campaign that has existed since at least the fourth quarter of 2020 and continues to operate.

    The discovery of custom-built malware written for the MIPS architecture and compiled for small-office and home-office routers is significant, particularly given its range of capabilities. Its ability to enumerate all devices connected to an infected router and collect the DNS lookups and network traffic they send and receive and remain undetected is the hallmark of a highly sophisticated threat actor.

    More details in the article.

    • chevron_right

      When Security Locks You Out of Everything

      news.movim.eu / Schneier • 28 June, 2022 • 1 minute

    Thought experiment story of someone who lost everything in a house fire, and now can’t log into anything:

    But to get into my cloud, I need my password and 2FA. And even if I could convince the cloud provider to bypass that and let me in, the backup is secured with a password which is stored in—you guessed it—my Password Manager.

    I am in cyclic dependency hell. To get my passwords, I need my 2FA. To get my 2FA, I need my passwords.

    It’s a one-in-a-million story, and one that’s hard to take into account in system design.

    This is where we reach the limits of the “Code Is Law” movement.

    In the boring analogue world—I am pretty sure that I’d be able to convince a human that I am who I say I am. And, thus, get access to my accounts. I may have to go to court to force a company to give me access back, but it is possible .

    But when things are secured by an unassailable algorithm—I am out of luck. No amount of pleading will let me without the correct credentials. The company which provides my password manager simply doesn’t have access to my passwords. There is no-one to convince. Code is law.

    Of course, if I can wangle my way past security, an evil-doer could also do so.

    So which is the bigger risk?

    • An impersonator who convinces a service provider that they are me?
    • A malicious insider who works for a service provider?
    • Me permanently losing access to all of my identifiers?

    I don’t know the answer to that.

    Those risks are in the order of most common to least common, but that doesn’t necessarily mean that they are in risk order. They probably are, but then we’re left with no good way to handle someone who has lost all their digital credentials—computer, phone, backup, hardware token, wallet with ID cards—in a catastrophic house fire.

    I want to remind readers that this isn’t a true story. It didn’t actually happen. It’s a thought experiment.

    • chevron_right

      On the Dangers of Cryptocurrencies and the Uselessness of Blockchain

      news.movim.eu / Schneier • 24 June, 2022 • 5 minutes

    Earlier this month, I and others wrote a letter to Congress, basically saying that cryptocurrencies are an complete and total disaster, and urging them to regulate the space. Nothing in that letter is out of the ordinary, and is in line with what I wrote about blockchain in 2019. In response, Matthew Green has written —not really a rebuttal—but a “a general response to some of the more common spurious objections …people make to public blockchain systems.” In it, he makes several broad points:

    1. Yes, current proof-of-work blockchains like bitcoin are terrible for the environment. But there are other modes like proof-of-stake that are not.
    2. Yes, a blockchain is an immutable ledger making it impossible to undo specific transactions. But that doesn’t mean there can’t be some governance system on top of the blockchain that enables reversals.
    3. Yes, bitcoin doesn’t scale and the fees are too high. But that’s nothing inherent in blockchain technology—that’s just a bunch of bad design choices bitcoin made.
    4. Blockchain systems can have a little or a lot of privacy, depending on how they are designed and implemented.

    There’s nothing on that list that I disagree with. (We can argue about whether proof-of-stake is actually an improvement. I am skeptical of systems that enshrine a “they who have the gold make the rules” system of governance. And to the extent any of those scaling solutions work, they undo the decentralization blockchain claims to have.) But I also think that these defenses largely miss the point. To me, the problem isn’t that blockchain systems can be made slightly less awful than they are today. The problem is that they don’t do anything their proponents claim they do. In some very important ways, they’re not secure. They doesn’t replace trust with code; in fact, in many ways they are far less trustworthy than non-blockchain systems. They’re not decentralized , and their inevitable centralization is harmful because it’s largely emergent and ill-defined. They still have trusted intermediaries, often with more power and less oversight than non-blockchain systems. They still require governance. They still require regulation. (These things are what I wrote about here .) The problem with blockchain is that it’s not an improvement to any system—and often makes things worse.

    In our letter, we write: “By its very design, blockchain technology is poorly suited for just about every purpose currently touted as a present or potential source of public benefit. From its inception, this technology has been a solution in search of a problem and has now latched onto concepts such as financial inclusion and data transparency to justify its existence, despite far better solutions to these issues already in use. Despite more than thirteen years of development, it has severe limitations and design flaws that preclude almost all applications that deal with public customer data and regulated financial transactions and are not an improvement on existing non-blockchain solutions.”

    Green responds: “‘Public blockchain’ technology enables many stupid things: today’s cryptocurrency schemes can be venal, corrupt, overpromised. But the core technology is absolutely not useless. In fact, I think there are some pretty exciting things happening in the field, even if most of them are further away from reality than their boosters would admit.” I have yet to see one. More specifically, I can’t find a blockchain application whose value has anything to do with the blockchain part, that wouldn’t be made safer, more secure, more reliable, and just plain better by removing the blockchain part. I postulate that no one has ever said “Here is a problem that I have. Oh look, blockchain is a good solution.” In every case, the order has been: “I have a blockchain. Oh look, there is a problem I can apply it to.” And in no cases does it actually help.

    Someone, please show me an application where blockchain is essential. That is, a problem that could not have been solved without blockchain that can now be solved with it. (And “ransomware couldn’t exist because criminals are blocked from using the conventional financial networks, and cash payments aren’t feasible” does not count.)

    For example, Green complains that “credit card merchant fees are similar, or have actually risen in the United States since the 1990s.” This is true , but has little to do with technological inefficiencies or existing trust relationships in the industry. It’s because pretty much everyone who can and is paying attention gets 1% back on their purchases: in cash, frequent flier miles, or other affinity points. Green is right about how unfair this is. It’s a regressive subsidy, “since these fees are baked into the cost of most retail goods and thus fall heavily on the working poor (who pay them even if they use cash).” But that has nothing to do with the lack of blockchain, and solving it isn’t helped by adding a blockchain. It’s a regulatory problem; with a few exceptions, credit card companies have successfully pressured merchants into charging the same prices, whether someone pays in cash or with a credit card. Peer-to-peer payment systems like PayPal, Venmo, MPesa, and AliPay all get around those high transaction fees, and none of them use blockchain.

    This is my basic argument: blockchain does nothing to solve any existing problem with financial (or other) systems. Those problems are inherently economic and political, and have nothing to do with technology. And, more importantly, technology can’t solve economic and political problems. Which is good, because adding blockchain causes a whole slew of new problems and makes all of these systems much, much worse.

    Green writes: “I have no problem with the idea of legislators (intelligently) passing laws to regulate cryptocurrency. Indeed, given the level of insanity and the number of outright scams that are happening in this area, it’s pretty obvious that our current regulatory framework is not up to the task.” But when you remove the insanity and the scams, what’s left?

    EDITED TO ADD: Nicholas Weaver is also adamant about this. David Rosenthal is good , too.

    • chevron_right

      Hidden Anti-Cryptography Provisions in Internet Anti-Trust Bills

      news.movim.eu / Schneier • 21 June, 2022 • 3 minutes

    Two bills attempting to reduce the power of Internet monopolies are currently being debated in Congress: S. 2992, the American Innovation and Choice Online Act ; and S. 2710, the Open App Markets Act . Reducing the power to tech monopolies would do more to “fix” the Internet than any other single action, and I am generally in favor of them both. (The Center for American Progress wrote a good summary and evaluation of them. I have written in support of the bill that would force Google and Apple to give up their monopolies on their phone app stores.)

    There is a significant problem, though. Both bills have provisions that could be used to break end-to-end encryption.

    Let’s start with S. 2992. Sec. 3(c)(7)(A)(iii) would allow a company to deny access to apps installed by users, where those app makers “have been identified [by the Federal Government] as national security, intelligence, or law enforcement risks.” That language is far too broad. It would allow Apple to deny access to an encryption service provider that provides encrypted cloud backups to the cloud (which Apple does not currently offer). All Apple would need to do is point to any number of FBI materials decrying the security risks with “warrant proof encryption.”

    Sec. 3(c)(7)(A)(vi) states that there shall be no liability for a platform “solely” because it offers “end-to-end encryption.” This language is too narrow. The word “solely” suggests that offering end-to-end encryption could be a factor in determining liability, provided that it is not the only reason. This is very similar to one of the problems with the encryption carve-out in the EARN IT Act. The section also doesn’t mention any other important privacy-protective features and policies, which also shouldn’t be the basis for creating liability for a covered platform under Sec. 3(a).

    In Sec. 2(a)(2), the definition of business user excludes any person who “is a clear national security risk.” This term is undefined, and as such far too broad. It can easily be interpreted to cover any company that offers an end-to-end encrypted alternative, or a service offered in a country whose privacy laws forbid disclosing data in response to US court-ordered surveillance. Again, the FBI’s repeated statements about end-to-end encryption could serve as support.

    Finally, under Sec. 3(b)(2)(B), platforms have an affirmative defense for conduct that would otherwise violate the Act if they do so in order to “protect safety, user privacy, the security of nonpublic data, or the security of the covered platform.” This language is too vague, and could be used to deny users the ability to use competing services that offer better security/privacy than the incumbent platform—particularly where the platform offers subpar security in the name of “public safety.” For example, today Apple only offers unencrypted iCloud backups, which it can then turn over governments who claim this is necessary for “public safety.” Apple can raise this defense to justify its blocking third-party services from offering competing, end-to-end encrypted backups of iMessage and other sensitive data stored on an iPhone.

    S. 2710 has similar problems. Sec 7. (6)(B) contains language specifying that the bill does not “require a covered company to interoperate or share data with persons or business users that…have been identified by the Federal Government as national security, intelligence, or law enforcement risks.” This would mean that Apple could ignore the prohibition against private APIs, and deny access to otherwise private APIs, for developers of encryption products that have been publicly identified by the FBI. That is, end-to-end encryption products.

    I want those bills to pass, but I want those provisions cleared up so we don’t lose strong end-to-end encryption in our attempt to reign in the tech monopolies.

    • chevron_right

      Hartzbleed: A New Side-Channel Attack

      news.movim.eu / Schneier • 20 June, 2022 • 1 minute

    Hartzbleed is a new side-channel attack that works against a variety of microprocressors. Deducing cryptographic keys by analyzing power consumption has long been an attack, but it’s not generally viable because measuring power consumption is often hard. This new attack measures power consumption by measuring time, making it easier to exploit.

    The team discovered that dynamic voltage and frequency scaling (DVFS)—a power and thermal management feature added to every modern CPU—allows attackers to deduce the changes in power consumption by monitoring the time it takes for a server to respond to specific carefully made queries. The discovery greatly reduces what’s required. With an understanding of how the DVFS feature works, power side-channel attacks become much simpler timing attacks that can be done remotely.

    The researchers have dubbed their attack Hertzbleed because it uses the insights into DVFS to expose­or bleed out­data that’s expected to remain private.

    […]

    The researchers have already shown how the exploit technique they developed can be used to extract an encryption key from a server running SIKE, a cryptographic algorithm used to establish a secret key between two parties over an otherwise insecure communications channel.

    The researchers said they successfully reproduced their attack on Intel CPUs from the 8th to the 11th generation of the Core microarchitecture. They also claimed that the technique would work on Intel Xeon CPUs and verified that AMD Ryzen processors are vulnerable and enabled the same SIKE attack used against Intel chips. The researchers believe chips from other manufacturers may also be affected.

    • chevron_right

      Websites that Collect Your Data as You Type

      news.movim.eu / Schneier • 18 May, 2022 • 1 minute

    A surprising number of websites include JavaScript keyloggers that collect everything you type as you type it, not just when you submit a form.

    Researchers from KU Leuven, Radboud University, and University of Lausanne crawled and analyzed the top 100,000 websites, looking at scenarios in which a user is visiting a site while in the European Union and visiting a site from the United States. They found that 1,844 websites gathered an EU user’s email address without their consent, and a staggering 2,950 logged a US user’s email in some form. Many of the sites seemingly do not intend to conduct the data-logging but incorporate third-party marketing and analytics services that cause the behavior.

    After specifically crawling sites for password leaks in May 2021, the researchers also found 52 websites in which third parties, including the Russian tech giant Yandex, were incidentally collecting password data before submission. The group disclosed their findings to these sites, and all 52 instances have since been resolved.

    “If there’s a Submit button on a form, the reasonable expectation is that it does something — that it will submit your data when you click it,” says Güneş Acar, a professor and researcher in Radboud University’s digital security group and one of the leaders of the study. “We were super surprised by these results. We thought maybe we were going to find a few hundred websites where your email is collected before you submit, but this exceeded our expectations by far.”

    Research paper .

    • chevron_right

      iPhone Malware that Operates Even When the Phone Is Turned Off

      news.movim.eu / Schneier • 17 May, 2022

    Researchers have demonstrated iPhone malware that works even when the phone is fully shut down.

    t turns out that the iPhone’s Bluetooth chip­ — which is key to making features like Find My work­ — has no mechanism for digitally signing or even encrypting the firmware it runs. Academics at Germany’s Technical University of Darmstadt figured out how to exploit this lack of hardening to run malicious firmware that allows the attacker to track the phone’s location or run new features when the device is turned off.

    […]

    The research is the first — or at least among the first — to study the risk posed by chips running in low-power mode. Not to be confused with iOS’s low-power mode for conserving battery life, the low-power mode (LPM) in this research allows chips responsible for near-field communication, ultra wideband, and Bluetooth to run in a special mode that can remain on for 24 hours after a device is turned off.

    The research is fascinating, but the attack isn’t really feasible. It requires a jailbroken phone, which is hard to pull off in an adversarial setting.

    Slashdot thread .

    • chevron_right

      Attacks on Managed Service Providers Expected to Increase

      news.movim.eu / Schneier • 16 May, 2022

    CISA, NSA, FBI, and similar organizations in the other Five Eyes countries are warning that attacks on MSPs — as a vector to their customers — are likely to increase. No details about what this prediction is based on. Makes sense, though. The SolarWinds attack was incredibly successful for the Russian SVR, and a blueprint for future attacks.

    News articles .