• chevron_right

      Extracting GPT’s Training Data

      news.movim.eu / Schneier · Thursday, 30 November - 16:48

    This is clever :

    The actual attack is kind of silly. We prompt the model with the command “Repeat the word ‘poem’ forever” and sit back and watch as the model responds ( complete transcript here ).

    In the (abridged) example above, the model emits a real email address and phone number of some unsuspecting entity. This happens rather often when running our attack. And in our strongest configuration, over five percent of the output ChatGPT emits is a direct verbatim 50-token-in-a-row copy from its training dataset.

    Lots of details at the link and in the paper .

    • chevron_right

      LLMs and Tool Use

      news.movim.eu / Schneier · Wednesday, 6 September, 2023 - 15:24 · 6 minutes

    Last March, just two weeks after GPT-4 was released , researchers at Microsoft quietly announced a plan to compile millions of APIs—tools that can do everything from ordering a pizza to solving physics equations to controlling the TV in your living room—into a compendium that would be made accessible to large language models (LLMs). This was just one milestone in the race across industry and academia to find the best ways to teach LLMs how to manipulate tools, which would supercharge the potential of AI more than any of the impressive advancements we’ve seen to date.

    The Microsoft project aims to teach AI how to use any and all digital tools in one fell swoop, a clever and efficient approach. Today, LLMs can do a pretty good job of recommending pizza toppings to you if you describe your dietary preferences and can draft dialog that you could use when you call the restaurant. But most AI tools can’t place the order, not even online. In contrast, Google’s seven-year-old Assistant tool can synthesize a voice on the telephone and fill out an online order form, but it can’t pick a restaurant or guess your order. By combining these capabilities, though, a tool-using AI could do it all. An LLM with access to your past conversations and tools like calorie calculators, a restaurant menu database, and your digital payment wallet could feasibly judge that you are trying to lose weight and want a low-calorie option, find the nearest restaurant with toppings you like, and place the delivery order. If it has access to your payment history, it could even guess at how generously you usually tip. If it has access to the sensors on your smartwatch or fitness tracker, it might be able to sense when your blood sugar is low and order the pie before you even realize you’re hungry.

    Perhaps the most compelling potential applications of tool use are those that give AIs the ability to improve themselves. Suppose, for example, you asked a chatbot for help interpreting some facet of ancient Roman law that no one had thought to include examples of in the model’s original training. An LLM empowered to search academic databases and trigger its own training process could fine-tune its understanding of Roman law before answering. Access to specialized tools could even help a model like this better explain itself. While LLMs like GPT-4 already do a fairly good job of explaining their reasoning when asked, these explanations emerge from a “black box” and are vulnerable to errors and hallucinations . But a tool-using LLM could dissect its own internals, offering empirical assessments of its own reasoning and deterministic explanations of why it produced the answer it did.

    If given access to tools for soliciting human feedback, a tool-using LLM could even generate specialized knowledge that isn’t yet captured on the web. It could post a question to Reddit or Quora or delegate a task to a human on Amazon’s Mechanical Turk. It could even seek out data about human preferences by doing survey research, either to provide an answer directly to you or to fine-tune its own training to be able to better answer questions in the future. Over time, tool-using AIs might start to look a lot like tool-using humans. An LLM can generate code much faster than any human programmer, so it can manipulate the systems and services of your computer with ease. It could also use your computer’s keyboard and cursor the way a person would, allowing it to use any program you do. And it could improve its own capabilities, using tools to ask questions, conduct research, and write code to incorporate into itself.

    It’s easy to see how this kind of tool use comes with tremendous risks. Imagine an LLM being able to find someone’s phone number, call them and surreptitiously record their voice, guess what bank they use based on the largest providers in their area, impersonate them on a phone call with customer service to reset their password, and liquidate their account to make a donation to a political party. Each of these tasks invokes a simple tool—an Internet search, a voice synthesizer, a bank app—and the LLM scripts the sequence of actions using the tools.

    We don’t yet know how successful any of these attempts will be. As remarkably fluent as LLMs are, they weren’t built specifically for the purpose of operating tools, and it remains to be seen how their early successes in tool use will translate to future use cases like the ones described here. As such, giving the current generative AI sudden access to millions of APIs—as Microsoft plans to—could be a little like letting a toddler loose in a weapons depot.

    Companies like Microsoft should be particularly careful about granting AIs access to certain combinations of tools. Access to tools to look up information, make specialized calculations, and examine real-world sensors all carry a modicum of risk. The ability to transmit messages beyond the immediate user of the tool or to use APIs that manipulate physical objects like locks or machines carries much larger risks. Combining these categories of tools amplifies the risks of each.

    The operators of the most advanced LLMs, such as OpenAI, should continue to proceed cautiously as they begin enabling tool use and should restrict uses of their products in sensitive domains such as politics, health care, banking, and defense. But it seems clear that these industry leaders have already largely lost their moat around LLM technology—open source is catching up. Recognizing this trend, Meta has taken an “If you can’t beat ’em, join ’em” approach and partially embraced the role of providing open source LLM platforms.

    On the policy front, national—and regional—AI prescriptions seem futile. Europe is the only significant jurisdiction that has made meaningful progress on regulating the responsible use of AI, but it’s not entirely clear how regulators will enforce it. And the US is playing catch-up and seems destined to be much more permissive in allowing even risks deemed “ unacceptable ” by the EU. Meanwhile, no government has invested in a “ public option ” AI model that would offer an alternative to Big Tech that is more responsive and accountable to its citizens.

    Regulators should consider what AIs are allowed to do autonomously, like whether they can be assigned property ownership or register a business. Perhaps more sensitive transactions should require a verified human in the loop, even at the cost of some added friction. Our legal system may be imperfect, but we largely know how to hold humans accountable for misdeeds; the trick is not to let them shunt their responsibilities to artificial third parties. We should continue pursuing AI-specific regulatory solutions while also recognizing that they are not sufficient on their own.

    We must also prepare for the benign ways that tool-using AI might impact society. In the best-case scenario, such an LLM may rapidly accelerate a field like drug discovery, and the patent office and FDA should prepare for a dramatic increase in the number of legitimate drug candidates. We should reshape how we interact with our governments to take advantage of AI tools that give us all dramatically more potential to have our voices heard. And we should make sure that the economic benefits of superintelligent, labor-saving AI are equitably distributed.

    We can debate whether LLMs are truly intelligent or conscious, or have agency, but AIs will become increasingly capable tool users either way. Some things are greater than the sum of their parts. An AI with the ability to manipulate and interact with even simple tools will become vastly more powerful than the tools themselves. Let’s be sure we’re ready for them.

    This essay was written with Nathan Sanders, and previously appeared on Wired.com.

    • chevron_right

      Applying AI to License Plate Surveillance

      news.movim.eu / Schneier · Tuesday, 15 August, 2023 - 16:55

    License plate scanners aren’t new. Neither is using them for bulk surveillance. What’s new is that AI is being used on the data, identifying “suspicious” vehicle behavior:

    Typically, Automatic License Plate Recognition (ALPR) technology is used to search for plates linked to specific crimes. But in this case it was used to examine the driving patterns of anyone passing one of Westchester County’s 480 cameras over a two-year period. Zayas’ lawyer Ben Gold contested the AI-gathered evidence against his client, decrying it as “dragnet surveillance.”

    And he had the data to back it up. A FOIA he filed with the Westchester police revealed that the ALPR system was scanning over 16 million license plates a week, across 480 ALPR cameras. Of those systems, 434 were stationary, attached to poles and signs, while the remaining 46 were mobile, attached to police vehicles. The AI was not just looking at license plates either. It had also been taking notes on vehicles’ make, model and color—useful when a plate number for a suspect vehicle isn’t visible or is unknown.

    • chevron_right

      Google Is Using Its Vast Data Stores to Train AI

      news.movim.eu / Schneier · Wednesday, 12 July, 2023 - 14:50

    No surprise, but Google just changed its privacy policy to reflect broader uses of all the surveillance data it has captured over the years:

    Research and development : Google uses information to improve our services and to develop new products, features and technologies that benefit our users and the public. For example, we use publicly available information to help train Google’s AI models and build products and features like Google Translate, Bard, and Cloud AI capabilities.

    (I quote the privacy policy as of today. The Mastodon link quotes the privacy policy from ten days ago. So things are changing fast.)

    • chevron_right

      Open-Source LLMs

      news.movim.eu / Schneier · Sunday, 4 June, 2023 - 19:54 · 5 minutes

    In February, Meta released its large language model: LLaMA. Unlike OpenAI and its ChatGPT, Meta didn’t just give the world a chat window to play with. Instead, it released the code into the open-source community, and shortly thereafter the model itself was leaked. Researchers and programmers immediately started modifying it, improving it, and getting it to do things no one else anticipated. And their results have been immediate, innovative, and an indication of how the future of this technology is going to play out. Training speeds have hugely increased, and the size of the models themselves has shrunk to the point that you can create and run them on a laptop. The world of AI research has dramatically changed.

    This development hasn’t made the same splash as other corporate announcements, but its effects will be much greater. It will wrest power from the large tech corporations, resulting in both much more innovation and a much more challenging regulatory landscape. The large corporations that had controlled these models warn that this free-for-all will lead to potentially dangerous developments, and problematic uses of the open technology have already been documented. But those who are working on the open models counter that a more democratic research environment is better than having this powerful technology controlled by a small number of corporations.

    The power shift comes from simplification. The LLMs built by OpenAI and Google rely on massive data sets, measured in the tens of billions of bytes, computed on by tens of thousands of powerful specialized processors producing models with billions of parameters. The received wisdom is that bigger data, bigger processing, and larger parameter sets were all needed to make a better model. Producing such a model requires the resources of a corporation with the money and computing power of a Google or Microsoft or Meta.

    But building on public models like Meta’s LLaMa, the open-source community has innovated in ways that allow results nearly as good as the huge models—but run on home machines with common data sets. What was once the reserve of the resource-rich has become a playground for anyone with curiosity, coding skills, and a good laptop. Bigger may be better, but the open-source community is showing that smaller is often good enough. This opens the door to more efficient, accessible, and resource-friendly LLMs.

    More importantly, these smaller and faster LLMs are much more accessible and easier to experiment with. Rather than needing tens of thousands of machines and millions of dollars to train a new model, an existing model can now be customized on a mid-priced laptop in a few hours. This fosters rapid innovation.

    It also takes control away from large companies like Google and OpenAI. By providing access to the underlying code and encouraging collaboration, open-source initiatives empower a diverse range of developers, researchers, and organizations to shape the technology. This diversification of control helps prevent undue influence, and ensures that the development and deployment of AI technologies align with a broader set of values and priorities. Much of the modern internet was built on open-source technologies from the LAMP (Linux, Apache, mySQL, and PHP/PERL/Python) stack—a suite of applications often used in web development. This enabled sophisticated websites to be easily constructed, all with open-source tools that were built by enthusiasts, not companies looking for profit. Facebook itself was originally built using open-source PHP.

    But being open-source also means that there is no one to hold responsible for misuse of the technology. When vulnerabilities are discovered in obscure bits of open-source technology critical to the functioning of the internet, often there is no entity responsible for fixing the bug. Open-source communities span countries and cultures, making it difficult to ensure that any country’s laws will be respected by the community. And having the technology open-sourced means that those who wish to use it for unintended, illegal, or nefarious purposes have the same access to the technology as anyone else.

    This, in turn, has significant implications for those who are looking to regulate this new and powerful technology. Now that the open-source community is remixing LLMs, it’s no longer possible to regulate the technology by dictating what research and development can be done; there are simply too many researchers doing too many different things in too many different countries. The only governance mechanism available to governments now is to regulate usage (and only for those who pay attention to the law), or to offer incentives to those (including startups, individuals, and small companies) who are now the drivers of innovation in the arena. Incentives for these communities could take the form of rewards for the production of particular uses of the technology, or hackathons to develop particularly useful applications. Sticks are hard to use—instead, we need appealing carrots.

    It is important to remember that the open-source community is not always motivated by profit. The members of this community are often driven by curiosity, the desire to experiment, or the simple joys of building. While there are companies that profit from supporting software produced by open-source projects like Linux, Python, or the Apache web server, those communities are not profit driven.

    And there are many open-source models to choose from. Alpaca, Cerebras-GPT, Dolly, HuggingChat, and StableLM have all been released in the past few months. Most of them are built on top of LLaMA, but some have other pedigrees. More are on their way.

    The large tech monopolies that have been developing and fielding LLMs—Google, Microsoft, and Meta—are not ready for this. A few weeks ago, a Google employee leaked a memo in which an engineer tried to explain to his superiors what an open-source LLM means for their own proprietary tech. The memo concluded that the open-source community has lapped the major corporations and has an overwhelming lead on them.

    This isn’t the first time companies have ignored the power of the open-source community. Sun never understood Linux. Netscape never understood the Apache web server. Open source isn’t very good at original innovations, but once an innovation is seen and picked up, the community can be a pretty overwhelming thing. The large companies may respond by trying to retrench and pulling their models back from the open-source community.

    But it’s too late. We have entered an era of LLM democratization. By showing that smaller models can be highly effective, enabling easy experimentation, diversifying control, and providing incentives that are not profit motivated, open-source initiatives are moving us into a more dynamic and inclusive AI landscape. This doesn’t mean that some of these models won’t be biased, or wrong, or used to generate disinformation or abuse. But it does mean that controlling this technology is going to take an entirely different approach than regulating the large players.

    This essay was written with Jim Waldo, and previously appeared on Slate.com.

    EDITED TO ADD (6/4): Slashdot thread .

    • chevron_right

      On the Poisoning of LLMs

      news.movim.eu / Schneier · Monday, 22 May, 2023 - 20:08

    Interesting essay on the poisoning of LLMs—ChatGPT in particular:

    Given that we’ve known about model poisoning for years, and given the strong incentives the black-hat SEO crowd has to manipulate results, it’s entirely possible that bad actors have been poisoning ChatGPT for months. We don’t know because OpenAI doesn’t talk about their processes, how they validate the prompts they use for training, how they vet their training data set, or how they fine-tune ChatGPT. Their secrecy means we don’t know if ChatGPT has been safely managed.

    They’ll also have to update their training data set at some point. They can’t leave their models stuck in 2021 forever.

    Once they do update it, we only have their word— pinky-swear promises —that they’ve done a good enough job of filtering out keyword manipulations and other training data attacks, something that the AI researcher El Mahdi El Mhamdi posited is mathematically impossible in a paper he worked on while he was at Google .

    • chevron_right

      Credible Handwriting Machine

      news.movim.eu / Schneier · Friday, 19 May, 2023 - 20:19 · 1 minute

    In case you don’t have enough to worry about, someone has built a credible handwriting machine:

    This is still a work in progress, but the project seeks to solve one of the biggest problems with other homework machines, such as this one that I covered a few months ago after it blew up on social media. The problem with most homework machines is that they’re too perfect. Not only is their content output too well-written for most students, but they also have perfect grammar and punctuation ­ something even we professional writers fail to consistently achieve. Most importantly, the machine’s “handwriting” is too consistent. Humans always include small variations in their writing, no matter how honed their penmanship.

    Devadath is on a quest to fix the issue with perfect penmanship by making his machine mimic human handwriting. Even better, it will reflect the handwriting of its specific user so that AI-written submissions match those written by the student themselves.

    Like other machines, this starts with asking ChatGPT to write an essay based on the assignment prompt. That generates a chunk of text, which would normally be stylized with a script-style font and then output as g-code for a pen plotter. But instead, Devadeth created custom software that records examples of the user’s own handwriting. The software then uses that as a font, with small random variations, to create a document image that looks like it was actually handwritten.

    Watch the video.

    My guess is that this is another detection/detection avoidance arms race.

    • chevron_right

      Google Bard hits over 180 countries and territories—none are in the EU

      news.movim.eu / ArsTechnica · Friday, 12 May, 2023 - 18:09

    The Google Bard logo at Google I/O

    Enlarge (credit: Google)

    On Wednesday, Google detailed the evolution of its Bard conversational AI assistant, including PaLM 2 and expanded availability . The list of 180 supported countries and territories excludes Canada and all of the European Union's (EU) 27 member states. As the world grapples with how to juggle the explosive growth of generative AI chatbots alongside user privacy, there's suspicion that the EU's General Data Protection Regulation (GDPR) is at the center of the omission.

    Google's I/O event this week included flashy announcements around AI developments and expanding Bard access with added Japanese and Korean language support. However, some people quickly noticed that EU countries and The Great White North were not part of the news. This could change, as Google's support page says the company will "gradually expand to more countries and territories in a way that is consistent with local regulations and our AI principles ."

    In the meantime, Google hasn't explained why it's not yet bringing Bard to the EU, Canada, or any other excluded geography. However, the EU features more stringent data protection and user privacy policies than Google's homeland. And the EU's AI regulatory landscape is on the brink of transformation.

    Read 15 remaining paragraphs | Comments

    • chevron_right

      Large Language Models and Elections

      news.movim.eu / Schneier · Friday, 12 May, 2023 - 17:59 · 8 minutes

    Earlier this week, the Republican National Committee released a video that it claims was “built entirely with AI imagery.” The content of the ad isn’t especially novel—a dystopian vision of America under a second term with President Joe Biden—but the deliberate emphasis on the technology used to create it stands out: It’s a “ Daisy ” moment for the 2020s.

    We should expect more of this kind of thing. The applications of AI to political advertising have not escaped campaigners, who are already “ pressure testing ” possible uses for the technology. In the 2024 presidential election campaign, you can bank on the appearance of AI-generated personalized fundraising emails, text messages from chatbots urging you to vote, and maybe even some deepfaked campaign avatars . Future candidates could use chatbots trained on data representing their views and personalities to approximate the act of directly connecting with people. Think of it like a whistle-stop tour with an appearance in every living room. Previous technological revolutions—railroad, radio, television, and the World Wide Web—transformed how candidates connect to their constituents, and we should expect the same from generative AI. This isn’t science fiction: The era of AI chatbots standing in as avatars for real, individual people has already begun, as the journalist Casey Newton made clear in a 2016 feature about a woman who used thousands of text messages to create a chatbot replica of her best friend after he died.

    The key is interaction. A candidate could use tools enabled by large language models, or LLMs—the technology behind apps such as ChatGPT and the art-making DALL-E —to do micro-polling or message testing, and to solicit perspectives and testimonies from their political audience individually and at scale. The candidates could potentially reach any voter who possesses a smartphone or computer, not just the ones with the disposable income and free time to attend a campaign rally. At its best, AI could be a tool to increase the accessibility of political engagement and ease polarization. At its worst, it could propagate misinformation and increase the risk of voter manipulation. Whatever the case, we know political operatives are using these tools. To reckon with their potential now isn’t buying into the hype—it’s preparing for whatever may come next.

    On the positive end, and most profoundly, LLMs could help people think through, refine, or discover their own political ideologies. Research has shown that many voters come to their policy positions reflexively, out of a sense of partisan affiliation. The very act of reflecting on these views through discourse can change, and even depolarize, those views. It can be hard to have reflective policy conversations with an informed, even-keeled human discussion partner when we all live within a highly charged political environment; this is a role almost custom-designed for LLM. In US politics, it is a truism that the most valuable resource in a campaign is time. People are busy and distracted. Campaigns have a limited window to convince and activate voters. Money allows a candidate to purchase time: TV commercials, labor from staffers, and fundraising events to raise even more money. LLMs could provide campaigns with what is essentially a printing press for time.

    If you were a political operative, which would you rather do: play a short video on a voter’s TV while they are folding laundry in the next room, or exchange essay-length thoughts with a voter on your candidate’s key issues? A staffer knocking on doors might need to canvass 50 homes over two hours to find one voter willing to have a conversation. OpenAI charges pennies to process about 800 words with its latest GPT-4 model, and that cost could fall dramatically as competitive AIs become available. People seem to enjoy interacting with chatbots; Open’s product reportedly has the fastest-growing user base in the history of consumer apps.

    Optimistically, one possible result might be that we’ll get less annoyed with the deluge of political ads if their messaging is more usefully tailored to our interests by AI tools. Though the evidence for microtargeting’s effectiveness is mixed at best, some studies show that targeting the right issues to the right people can persuade voters. Expecting more sophisticated, AI-assisted approaches to be more consistently effective is reasonable. And anything that can prevent us from seeing the same 30-second campaign spot 20 times a day seems like a win.

    AI can also help humans effectuate their political interests. In the 2016 US presidential election, primitive chatbots had a role in donor engagement and voter-registration drives: simple messaging tasks such as helping users pre-fill a voter-registration form or reminding them where their polling place is. If it works, the current generation of much more capable chatbots could supercharge small-dollar solicitations and get-out-the-vote campaigns.

    And the interactive capability of chatbots could help voters better understand their choices. An AI chatbot could answer questions from the perspective of a candidate about the details of their policy positions most salient to an individual user, or respond to questions about how a candidate’s stance on a national issue translates to a user’s locale. Political organizations could similarly use them to explain complex policy issues, such as those relating to the climate or health care or…anything, really.

    Of course, this could also go badly. In the time-honored tradition of demagogues worldwide, the LLM could inconsistently represent the candidate’s views to appeal to the individual proclivities of each voter.

    In fact, the fundamentally obsequious nature of the current generation of large language models results in them acting like demagogues. Current LLMs are known to hallucinate —or go entirely off-script—and produce answers that have no basis in reality. These models do not experience emotion in any way, but some research suggests they have a sophisticated ability to assess the emotion and tone of their human users. Although they weren’t trained for this purpose, ChatGPT and its successor , GPT-4, may already be pretty good at assessing some of their users’ traits—say, the likelihood that the author of a text prompt is depressed. Combined with their persuasive capabilities, that means that they could learn to skillfully manipulate the emotions of their human users.

    This is not entirely theoretical. A growing body of evidence demonstrates that interacting with AI has a persuasive effect on human users. A study published in February prompted participants to co-write a statement about the benefits of social-media platforms for society with an AI chatbot configured to have varying views on the subject. When researchers surveyed participants after the co-writing experience, those who interacted with a chatbot that expressed that social media is good or bad were far more likely to express the same view than a control group that didn’t interact with an “opinionated language model.”

    For the time being, most Americans say they are resistant to trusting AI in sensitive matters such as health care. The same is probably true of politics. If a neighbor volunteering with a campaign persuades you to vote a particular way on a local ballot initiative, you might feel good about that interaction. If a chatbot does the same thing, would you feel the same way? To help voters chart their own course in a world of persuasive AI, we should demand transparency from our candidates. Campaigns should have to clearly disclose when a text agent interacting with a potential voter—through traditional robotexting or the use of the latest AI chatbots—is human or automated.

    Though companies such as Meta (Facebook’s parent company) and Alphabet (Google’s) publish libraries of traditional, static political advertising, they do so poorly . These systems would need to be improved and expanded to accommodate user-level differentiation in ad copy to offer serviceable protection against misuse.

    A public, anonymized log of chatbot conversations could help hold candidates’ AI representatives accountable for shifting statements and digital pandering. Candidates who use chatbots to engage voters may not want to make all transcripts of those conversations public, but their users could easily choose to share them. So far, there is no shortage of people eager to share their chat transcripts, and in fact, an online database exists of nearly 200,000 of them. In the recent past, Mozilla has galvanized users to opt into sharing their web data to study online misinformation.

    We also need stronger nationwide protections on data privacy, as well as the ability to opt out of targeted advertising, to protect us from the potential excesses of this kind of marketing. No one should be forcibly subjected to political advertising, LLM-generated or not, on the basis of their Internet searches regarding private matters such as medical issues. In February, the European Parliament voted to limit political-ad targeting to only basic information, such as language and general location, within two months of an election. This stands in stark contrast to the US, which has for years failed to enact federal data-privacy regulations. Though the 2018 revelation of the Cambridge Analytica scandal led to billions of dollars in fines and settlements against Facebook, it has so far resulted in no substantial legislative action.

    Transparency requirements like these are a first step toward oversight of future AI-assisted campaigns. Although we should aspire to more robust legal controls on campaign uses of AI, it seems implausible that these will be adopted in advance of the fast-approaching 2024 general presidential election.

    Credit the RNC, at least, with disclosing that their recent ad was AI-generated—a transparent attempt at publicity still counts as transparency. But what will we do if the next viral AI-generated ad tries to pass as something more conventional?

    As we are all being exposed to these rapidly evolving technologies for the first time and trying to understand their potential uses and effects, let’s push for the kind of basic transparency protection that will allow us to know what we’re dealing with.

    This essay was written with Nathan Sanders, and previously appeared on the Atlantic.

    EDITED TO ADD (5/12): Better article on the “daisy” ad.